miR-153 Regulates SNAP-25, Synaptic Transmission, and Neuronal Development

نویسندگان

  • Chunyao Wei
  • Elizabeth J. Thatcher
  • Abigail F. Olena
  • Diana J. Cha
  • Ana L. Perdigoto
  • Andrew F. Marshall
  • Bruce D. Carter
  • Kendal Broadie
  • James G. Patton
چکیده

SNAP-25 is a core component of the trimeric SNARE complex mediating vesicle exocytosis during membrane addition for neuronal growth, neuropeptide/growth factor secretion, and neurotransmitter release during synaptic transmission. Here, we report a novel microRNA mechanism of SNAP-25 regulation controlling motor neuron development, neurosecretion, synaptic activity, and movement in zebrafish. Loss of miR-153 causes overexpression of SNAP-25 and consequent hyperactive movement in early zebrafish embryos. Conversely, overexpression of miR-153 causes SNAP-25 down regulation resulting in near complete paralysis, mimicking the effects of treatment with Botulinum neurotoxin. miR-153-dependent changes in synaptic activity at the neuromuscular junction are consistent with the observed movement defects. Underlying the movement defects, perturbation of miR-153 function causes dramatic developmental changes in motor neuron patterning and branching. Together, our results indicate that precise control of SNAP-25 expression by miR-153 is critically important for proper neuronal patterning as well as neurotransmission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SNAP-25 in hippocampal CA1 region is involved in memory consolidation.

As a synaptosomal protein, SNAP-25 plays a role in a number of neuronal functions including axonal growth, dendrite formation, fusion of synaptic vesicles with membrane and the expression of long-term potentiation (LTP) in the hippocampus. Using a learning/memory behavior screening, we identified SNAP-25 as one of the differentially expressed genes in the hippocampus upon behavioral training. T...

متن کامل

Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission.

Although the basic molecular components that promote regulated neurotransmitter release are well established, the contribution of these proteins as regulators of the plasticity of neurotransmission and refinement of synaptic connectivity during development is elaborated less fully. For example, during the period of synaptic growth and maturation in brain, the expression of synaptosomal protein ...

متن کامل

Reduced SNAP-25 alters short-term plasticity at developing glutamatergic synapses.

SNAP-25 is a key component of the synaptic-vesicle fusion machinery, involved in several psychiatric diseases including schizophrenia and ADHD. SNAP-25 protein expression is lower in different brain areas of schizophrenic patients and in ADHD mouse models. How the reduced expression of SNAP-25 alters the properties of synaptic transmission, leading to a pathological phenotype, is unknown. We sh...

متن کامل

An Electrophysiological Investigation of the SNAP-25 Isoforms as Possible Regulators of Short-term Synaptic Plasticity

Neurons communicate with each other primarily through chemical synapses, where electrical signals are converted into chemical signals and then back to electrical signals. In the synapse, the electrical signal is transformed to a chemical signal through fusion of neurotransmitter-containing vesicles with the presynaptic plasma membrane. This regulated transmitter release is mainly promoted by a ...

متن کامل

An Ancient Duplication of Exon 5 in the Snap25 Gene Is Required for Complex Neuronal Development/Function

Alternative splicing is an evolutionary innovation to create functionally diverse proteins from a limited number of genes. SNAP-25 plays a central role in neuroexocytosis by bridging synaptic vesicles to the plasma membrane during regulated exocytosis. The SNAP-25 polypeptide is encoded by a single copy gene, but in higher vertebrates a duplication of exon 5 has resulted in two mutually exclusi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013